TRANSLATION FROM MODAL LANGUAGE INTO NONMODAL LANGUAGE

EVGENY BORISOV

1. First-order modal language \mathcal{L}

The vocabulary of \mathcal{L} includes:

- the set Var of individual variables x, y, ...,
- the set Con of individual constants a, b, ...,
- the set Pred of n-ary predicate letters $P, Q, \dots (n \ge 1)$,
- logical operators \neg , &, \Diamond , \exists , λ ,
- brackets (,).

All the sets of symbols are assumed to be pairwise disjoint. This also holds for the language \mathcal{L}' to be described in the next section.

The syntax of \mathcal{L}

 \mathcal{L} 's terms are individual variables and constants. The set of formulae ϕ of \mathcal{L} is defined as follows:

$$\phi ::= P(x_1, ..., x_n) \mid \neg \phi \mid \phi \& \phi \mid \Diamond \phi \mid \exists x \phi \mid (\lambda x. \phi)(t),$$

where P is an n-ary predicate, $x, x_1, ..., x_n$ are variables, t is a term. Notice that individial constants cannot occur in atomic formulae. If you whant to say in \mathcal{L} that a is P, you have to write $(\lambda x.P(x))(a)$, not P(a).

Notational convention

In what follows, I write $(\lambda x.\phi)(t)$ as $(t/x)\phi$.

Models for \mathcal{L}

A model \mathcal{M} for \mathcal{L} is a quadruple $\langle \mathcal{G}, \mathcal{R}, (\mathcal{D}_w)_{w \in G}, \mathcal{I} \rangle$, where:

- \bullet \mathcal{G} is a nonempty set of possible worlds,
- $\mathcal{R} \subseteq \mathcal{G}^2$ is the accessability relation between possible worlds,
- $(\mathcal{D}_w)_{w\in G}$ is a familty of nonempty sets domains of possible worlds,
- \bullet \mathcal{I} is the interpretation of individual constants and predicates, such that
 - for each individual constant $a, \mathcal{I}(a) : G \to D$,
 - for each n-ary predicate letter $P, \mathcal{I}(P) : G \to \mathcal{P}(\mathcal{D}^n)$, where $\mathcal{D} := \bigcup_{w \in \mathcal{G}} \mathcal{D}_w$, and \mathcal{P} stands for powerset.

Notational conventions

1) $\mathcal{M}, w, v \models \phi$ says that the formula ϕ is true at the possible world w of the model \mathcal{M} under the variable valuation v.

¹If we want to have a logic with equality, we add = to Pred and set $\mathcal{I}(=)(w)$ to be identity relation on \mathcal{D} for every w.

2) Let v be a variable valuation in $\langle \mathcal{G}, \mathcal{R}, (\mathcal{D}_w)_{w \in G}, \mathcal{I} \rangle$, i.e. $v : Var \to D$. Then $v\mathcal{I}$ is a function mapping each term and possible world to an object, such that for each term t and possible world w,

$$v\mathcal{I}(t,w) = \begin{cases} v(t) & \text{if } t \in Var \\ \mathcal{I}(t)(w) & \text{if } t \in Con. \end{cases}$$

3) If v is a variable valuation in $\langle \mathcal{G}, \mathcal{R}, (\mathcal{D}_w)_{w \in G}, \mathcal{I} \rangle$, $e \in \mathcal{D}$, and $x \in Var$, v_x^e is an x-variant of v mapping x to e, i.e.:

$$v_x^e(y) = \begin{cases} e & \text{if } y = x, \\ v(y) & \text{if } y \neq x. \end{cases}$$

Truth for \mathcal{L}

Let $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, (\mathcal{D}_w)_{w \in G}, \mathcal{I} \rangle$ be a model for \mathcal{L} , w a possible world in \mathcal{G} , v a variable valuation in \mathcal{M} , P an n-ary predicate letter, $x, x_1, ..., x_n$ variables, ϕ and ψ formulae. Then:

- $\mathcal{M}, w, v \models P(x_1, ..., x_n) \iff \langle v(x_1), ..., v(x_n) \rangle \in \mathcal{I}(P)(w);$
- $\mathcal{M}, w, v \vDash \neg \phi \iff \mathcal{M}, w, v \nvDash \phi$;
- $\mathcal{M}, w, v \vDash \phi \& \psi \iff \mathcal{M}, w, v \vDash \phi \text{ and } \mathcal{M}, w, v \vDash \psi;$
- $\mathcal{M}, w, v \models \Diamond \phi \iff \mathcal{M}, w', v \models \phi \text{ for some } w' \text{ with } w\mathcal{R}w';$
- $\mathcal{M}, w, v \vDash \exists x \phi \iff \mathcal{M}, w, v_x^e \vDash \phi \text{ for some } e \in \mathcal{D}_w;$ $\mathcal{M}, w, v \vDash (t/x)\phi \iff \mathcal{M}, w, v_x^{v\mathcal{I}(t,w)} \vDash \phi.$

Note that quantifiers range "just" over domains of possible worlds whereas predicates and constants are interpreted on the unions of domains of all possible worlds. Because of this, formulae like $(a/x)P(x)\&\forall x\neg P(x)$ might be true.

2. Two-sorted first-order nonmodal language \mathcal{L}'

In two-sorted languages, terms, functional symbols and predicate letters are typed using two elementary types. We will use elementary types [e] and [w]. When matching models for \mathcal{L} and models for \mathcal{L}' , we will associate [e] with entities in models for \mathcal{L} , and [w] with possible worlds in models for \mathcal{L} . Types of predicate letters are generated from elementary types as follows: if P is an n-ary predicate letter, its type is the string $[\tau_1,...,\tau_n]$ where each τ_i is either [e] or [w]. Same holds for functional symbols.

Vocabulary of \mathcal{L}' includes:

- the set Var of individual variables x, y, ... (taken from \mathcal{L} 's vocabulary); its members are set to be of [e] type,
- the set Var^+ of possible world variables $\alpha, \beta, ...$; its members are of [w] type,
- the set Con' of one-place [w]-type functional symbols. Symbols in Con' are generated by adding ' to individual constants in Con. E.g., if a is in Con, we have a' in Con';
- the set Pred' of predicate letters. The members of Pred' are obtained from letters in Pred by adding '. E.g., if P is in Pred, P' is in Pred'. If P is an n-ary predicate letter in Pred, P' is an n+1-ary predicate letter of the type [w,e,...,e],
- two additional predicate letters: R (of the type [w, w]) and E (of the type [w, e],
- logical operators \neg , &, \Diamond , \exists (note that λ -operator is not it \mathcal{L}' 's vocabulary),
- brackets (,).

The syntax of \mathcal{L}'

 \mathcal{L}' 's terms of [e] type are individual variables (members of Var) and expressions of the form $a'(\alpha)$, where $a' \in Con'$ and $\alpha \in Var^+$.

 \mathcal{L}' 's terms of [w] type are possible world variables (members of Var^+).

The set of formulae ϕ of \mathcal{L}' is defined as follows:

$$\phi ::= P(t_1, ..., t_n) \mid \neg \phi \mid \phi \& \phi \mid \exists x \phi \mid \exists \alpha \phi,$$

where P is an n-ary predicate letter (it may be either Q' for some Q in Pred, or R, or E); $t_1, ..., t_n$ are terms whose types match the type of P, i.e. if P is of the type $[\tau_1, ..., \tau_n]$, t_i is of the type $[\tau_i]$ for every i $(1 \le i \le n)$.

Models for \mathcal{L}'

A model \mathcal{M} for \mathcal{L}' is a triple $\langle \mathcal{D}, \mathcal{G}, \mathcal{I} \rangle$, where \mathcal{D} and \mathcal{G} are nonempty domains, and \mathcal{I} is an interpretation of function symbols and predicate letters, such that:

- for every a' in Con', $\mathcal{I}(a'): G \to D$,
- for every n+1-ary predicate letter P' in Pred', $\mathcal{I}(P')\subseteq\mathcal{G}\times\mathcal{D}^n$;
- $\bullet \ \mathcal{I}(R) \subseteq \mathcal{G}^2;$
- $\bullet \ \mathcal{I}(E) \subseteq \mathcal{G} \times \mathcal{D}.$

Variable valuations im Models for \mathcal{L}'

Let $\mathcal{M} = \langle \mathcal{D}, \mathcal{G}, \mathcal{I} \rangle$ be a model for \mathcal{L}' . A variable valuation v im \mathcal{M} is a function mapping each variable in Var to a member of \mathcal{D} , and each variable in Var^+ to a member of \mathcal{G} . Thus, we have:

- $v: Var \cup Var^+ \to \mathcal{D} \cup \mathcal{G}$
- for each x in Var, $v(x) \in \mathcal{D}$
- for each α in Var^+ , $v(\alpha) \in \mathcal{G}$.

Notational conventions

When evaluating formulae of \mathcal{L}' in models for \mathcal{L}' we will write $\mathcal{M}, v \models \phi$ for ϕ is true in \mathcal{L}' under v». ⁴

Denotation for \mathcal{L}'

For each function symbol a' in Con', $\mathcal{I}(a'): \mathcal{G} \to \mathcal{D}$.

 $v\mathcal{I}$ is a function assigning to each term t a denotation as follows:

$$v\mathcal{I}(t) = \begin{cases} v(t) & \text{if } t \in Var \cup Var^+ \\ \mathcal{I}(a')(v(\alpha)) & \text{if } t = a'(\alpha) \text{ for some } a' \text{ and } \alpha.^5 \end{cases}$$

Truth for \mathcal{L}'

Let $\mathcal{M} = \langle \mathcal{D}, \mathcal{G}, \mathcal{I} \rangle$ be a model for \mathcal{L}' , v a variable valuation in \mathcal{M} , P an n-ary predicate letter, $t_1, ..., t_n$ terms (whose tipes match the type of P), x a variable in Var, α a variable in Var^+ , ϕ and ψ formulae. Then:

- $\mathcal{M}, v \vDash P(t_1, ..., t_n) \iff \langle v\mathcal{I}(t_1), ..., v\mathcal{I}(t_n) \rangle \in \mathcal{I}(P')$ $\mathcal{M}, v \vDash \neg \phi \iff \mathcal{M}, v \nvDash \phi$

²We intend to interprete a' as a function from possible worlds to entities. That is why a' is applied to arguments of [w] type whereas the term $a'(\alpha)$ is of [e] type.

³For instance, if P is of the type [e, w], $P(x, \alpha)$ is a formula whereas the following expressions are not: $P(x,y), P(\alpha,\beta), P(\alpha,x).$

⁴Thus, \models has different meanings in evaluation of formulae of \mathcal{L} and in evaluation of formulae of \mathcal{L}' but this should not lead to confusion.

- $\mathcal{M}, v \vDash \phi \& \psi \iff \mathcal{M}, v \vDash \phi \text{ and } \mathcal{M}, v \vDash \psi$
- $\mathcal{M}, v \vDash \exists x \phi \iff \mathcal{M}, v_x^e \vDash \phi \text{ for some } e \in \mathcal{D}$
- $\mathcal{M}, v \vDash \exists \alpha \phi \iff \mathcal{M}, v_x^w \vDash \phi \text{ for some } w \in \mathcal{G}.$

3. Translation from \mathcal{L} into \mathcal{L}'

We define a family $(T_{\alpha})_{\alpha \in Var^+}$ of translation functions mapping terms and formulae of \mathcal{L} to terms and formulae of \mathcal{L}' .

One more notational convention

If ϕ is a formula, x is an individual variable and t a term, ϕ_x^t is a formula obtained from ϕ by replacing each free occurrence of x by an occurrence of t. This convention can be applied to formulae of both languages but if we apply it to a formula of \mathcal{L}' we should make sure that t is of [e] type.

Translation functions

Let α be a member of Var^+ . Then the translation function T_{α} is defined by the following clauses:

- for every $x \in Var$, $T_{\alpha}(x) = x$;
- for every $a \in Con$, $T_{\alpha}(a) = a'(\alpha)$;
- for every P in Pred, $T_{\alpha}(P(x_1,...,x_n)) = P'(\alpha, x_1,...,x_n);$
- $T_{\alpha}(\neg \phi) = \neg T_{\alpha}(\phi);$
- $T_{\alpha}(\phi \& \psi) = T_{\alpha}(\phi) \& T_{\alpha}(\psi);$
- $T_{\alpha}(\Diamond \phi) = \exists \beta (R(\alpha, \beta) \& T_{\beta}(\phi))$, where β is a new variable of [w] type; ⁶
- $T_{\alpha}(\exists x \phi) = \exists x (E(\alpha, x) \& T_{\alpha}(\phi));$
- $T_{\alpha}((t/x)\phi) = (T_{\alpha}(\phi))_x^{T_{\alpha}(t)}$.

An illustration. Here is an example of translation:

$$T_{\alpha}\Big(\exists x \Diamond(a/y) \neg P(x,y)\Big) =$$

$$= \exists x \Big(E(\alpha, x) \& T_{\alpha}\Big(\Diamond(a/y) \neg P(x,y)\Big)\Big) =$$

$$= \exists x \Big(E(\alpha, x) \& \exists \beta \Big(R(\alpha, \beta) \& T_{\beta}\big[(a/y) \neg P(x,y)\big]\Big)\Big) =$$

$$= \exists x \Big(E(\alpha, x) \& \exists \beta \Big(R(\alpha, \beta) \& \big[T_{\beta}(\neg P(x,y))\big]_{y}^{a'(\beta)}\Big)\Big) =$$

$$= \exists x \Big(E(\alpha, x) \& \exists \beta \Big(R(\alpha, \beta) \& \neg \big[T_{\beta}(P(x,y)\big]_{y}^{a'(\beta)}\Big)\Big) =$$

$$= \exists x \Big(E(\alpha, x) \& \exists \beta \Big(R(\alpha, \beta) \& \neg \big[P'(\beta, x, y)\big]_{y}^{a'(\beta)}\Big)\Big) =$$

$$= \exists x \Big(E(\alpha, x) \& \exists \beta \Big(R(\alpha, \beta) \& \neg P'(\beta, x, a'(\beta))\Big)\Big)$$

⁶Notice the switch from T_{α} to T_{β} .

4. Translations are truth-presering

Translation functions just defined are truth-preserving in a certain sense. To state this precisely, we have to define a function g from models for \mathcal{L} to models for \mathcal{L}' .

The function g from models for \mathcal{L} to models for \mathcal{L}'

Let $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, (\mathcal{D}_w)_{w \in G}, \mathcal{I} \rangle$ be a model for \mathcal{L}' .

Then $g(\mathcal{M}) = \langle \mathcal{G}, \mathcal{D}, \mathcal{I}' \rangle$ with $\mathcal{D} = \bigcup_{w \in \mathcal{G}} \mathcal{D}_w$ and \mathcal{I}' defined as follows:

- For every a' in Con', $\mathcal{I}(a')$ is a function mapping each w in \mathcal{G} to $\mathcal{I}(a)(w)$. I.e., $\mathcal{I}'(a')(w) = \mathcal{I}(a)(w)$.
- For every n + 1-ary predicate letter P' in Pred', $\mathcal{I}(P') = \{\langle w, e_1, ..., e_n \rangle : \langle e_1, ..., e_n \rangle \in \mathcal{I}(P)(w)\}.$
- $\mathcal{I}'(E) = \{ \langle w, e \rangle : e \in \mathcal{D}_w \}.$
- $\bullet \ \mathcal{I}'(R) = \mathcal{R}.$

Now we are in a position to precisely state in what sense T_{α} truth-preserving.

Proposition

Let \mathcal{M} be a model for \mathcal{L} , w a possible world in \mathcal{M} , v a variable valuation in \mathcal{M} , $\mathcal{M}' = g(\mathcal{M})$, v' a variable valuation in \mathcal{M}' such that v and v' agree on all variables in Var, and $v'(\alpha) = w$. Then for every formula ϕ of \mathcal{L} ,

$$\mathcal{M}, w, v \vDash \phi \iff \mathcal{M}', v' \vDash T_{\alpha}(\phi).$$

Proof. By induction on the structure of ϕ .

Homework. Show that the truth conditions of $\exists x \Diamond (a/y) \neg P(x,y)$ w.r.t. \mathcal{M} , w and v are equivalent to those of $T_{\alpha} \Big(\exists x \Diamond (a/y) \neg P(x,y) \Big)$ w.r.t. \mathcal{M}' and v' provided \mathcal{M} , w, v, \mathcal{M}' , and v' meet the conditions of the proposition above.